Raman spectroscopy calibration/analysis/errors – large scale containers

John M. Berg LANL, NMT-11 October 22, 2002

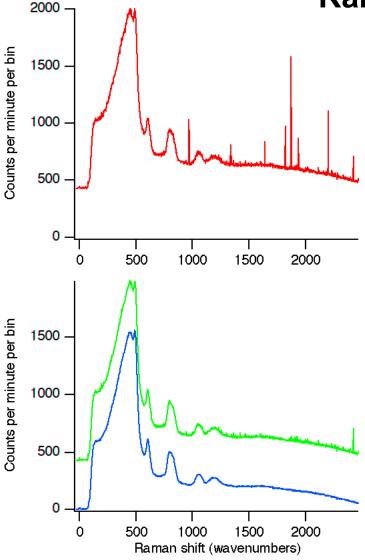
Topics

- Brief overview of the measurement method.
- Measurement results to date on large cans.
- Methods used to convert raw data to partial pressures.
- Detection thresholds and how they are defined and determined.

Overview of Raman application

- Raman spectroscopy scatters light off of a sample and measures the scattered intensity as a function of wavelength.
- Each molecule scatters at characteristic wavelengths which are well known, allowing straightforward identification.
- Intensity is proportional to concentration.
- Fiber optics deliver and collect light.

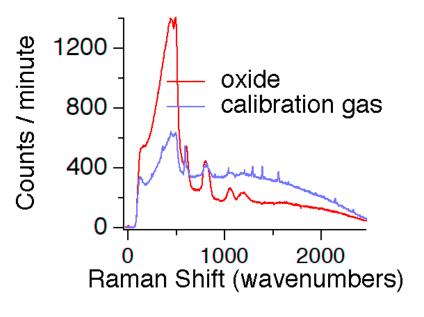
Detection Calibration gas mixture in **Threshold** Composition Raman sample chamber (torr) 10 min. at 0.5 watts 5.02 torr CO₂ 0.5 5.00 torr CO 0.9 7.02 torr H₂ 0.5 4.99 torr CH₄ 0.15 3.49 torr O₂ 0.5 $N_2 Q_1$ 1.2 64.5 torr N₂ 1.2 4.98 torr Ar N/A 4.99 torr He N/A Scattering Intensity 1.0 $CH_4(v_1)$ $H_2 S_0$ 8.0 (J''=1)H₂ Q₁ (J''=0)(J''=2)(J''=1)0.6 (J''=3) $CH_4(v_3)$ $CO_{2}(2v_{2},v_{1})$ CO Q₁ (J"=2) CH₄ (2v₂, v₁) 0.4 1000 2000 3000 4000 Raman Shift (cm⁻¹)


Methods of data treatment

- Raw data contain artifacts due to ionizing radiation hitting the detector (cosmic rays and local background). These are rare events that are removed by threshold filtering.
- Noise on inevitable background signal is reduced by signal averaging. It is the limiting factor in determining sensitivity.
- Detection thresholds are defined as the gas pressure that would produce a peak 5 times the amplitude of the background signal standard deviation.

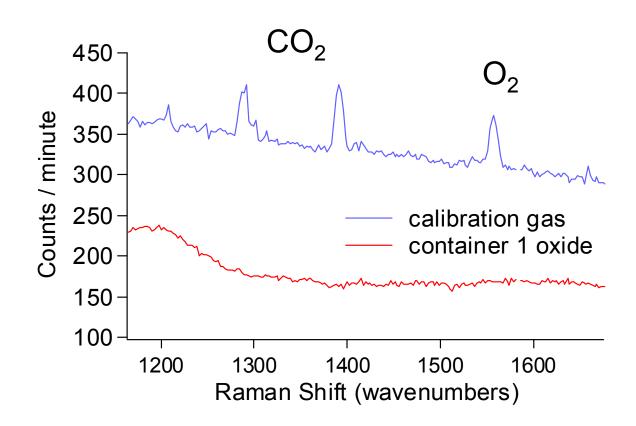
Raman data treatment

Raw spectrum, 1 minute

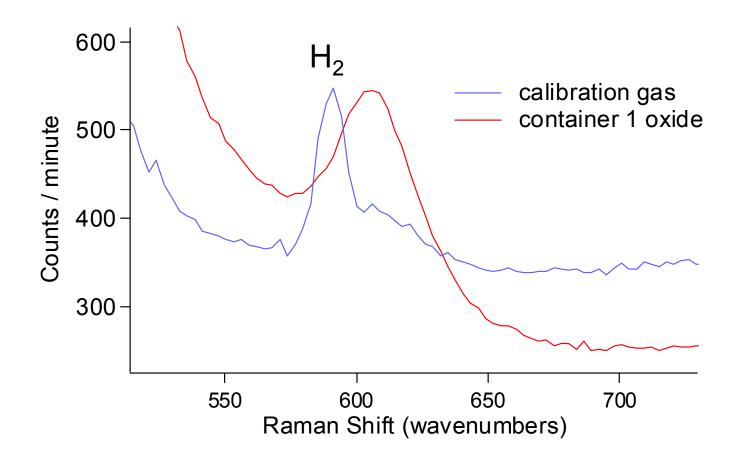

Average of 10, outliers discarded

Detector background subtracted

Typical Raman data



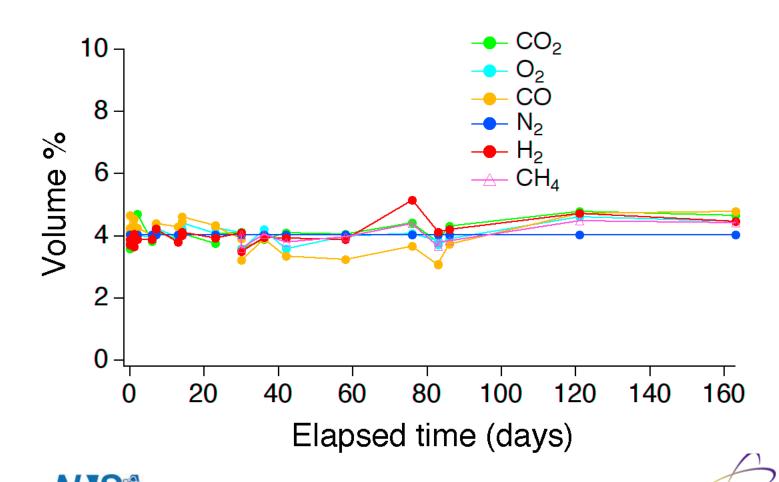
- Calibration gas included H₂,
 O₂, N₂, CO and CO₂.
- Gas signals do not vary appreciably between probes.



Container 1 shows no Raman-detectable gases after > 9 months.

Raman Detection Thresholds for Container 1

Gas pressure that would produce a peak 5 times the amplitude of the background signal standard deviation in 10 minutes.


	Torr	psi	std. atm.
H ₂	3	0.06	0.4 %
O_2	4	0.08	0.5 %
CO_2	4	0.08	0.5 %
N_2O	4	0.08	0.5 %
N_2	10	0.08	1.3 %

Calibration Gas Mixture in Empty Can

- Normalized to N₂ known value of 4.03%.
- Standard deviations of 5 to 8 %.

Application to Containers

- Raman is in-situ measurement, consuming no gas.
- Measurement frequency not limited by need to conserve sample.
- Initial measurments taken several per day.
- Measurement rate tapering to once per month after 3 months.

Summary

- Pure oxide in Container 1: no Raman signals from detectable gases (essentially everything but noble gases).
- Detection thresholds for 10 minute acquisitions are conservatively estimated at 3 torr for H₂, 4 torr for O₂, CO₂ and N₂O, and 10 torr for N₂.

